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Introduction 
 
This guidebook is an attempt to provide a practical and easy-to-understand guide to 
exploratory data analysis (EDA) using software that is common in today’s workplace.  
EDA is defined as an approach for analyzing a population of data to understand data 
characteristics, commonly with visual methods such as graphs.  The target audience 
for this guidebook is industry geoscientists that are tasked with collecting, analyzing, 
and interpreting geoscientific datasets.  Whether you’re an exploration geologist 
looking at trace chemistry assays, a mine geologist concerned with production 
reconciliation, or a hydrogeologist trying to make sense of contaminants, data is data 
and it must be thoroughly analyzed to be understood prior to completing 
interpretation or modelling.   
 
This guidebook outlines three types of EDA including: 1) univariate EDA concerned 
with the analysis of a single variable, 2) spatial EDA focused on the location and 
direction of data trends, and 3) bivariate EDA which analyzes the relationship 
between two variables.     

The workflow follows a basic series of steps required by geoscientists to interrogate 
and analyze data.  Most examples provided use geochemical assay data familiar to 
mining geoscientists such as drilling or point sample data.  Only fundamental EDA is 
covered to establish a minimum baseline of data analysis.  This guidebook does not 
discuss more sophisticated statistical tests or geostatistical analyses.  
 
The reader will get the most out of this guidebook if you have at minimum some 
familiarity with Excel® and the basic concepts of spreadsheets and charts.  Though 
this guidebook is meant as a step-by-step instructional guide, it does assume basic 
knowledge of computer use and rudimentary table and chart editing skills in Excel®. 
 
Readers can perform all the EDA presented in this guidebook using only Excel® and 
the Data Analysis add-in that is provided with the software.  No additional software is 
required to successfully utilize this guidebook.  Additionally, there are many high 
quality statistical software packages available on the market and it is recommended 
that these various software be evaluated by the reader should more detailed 
analyses be desired. 
 
The examples and step-by-step instructions are based on recent versions of Excel® 
for Windows PC.  The author realizes that readers may have different versions 
resulting in slight differences between the guidebook’s figures and what is displayed 
on the reader’s computer.  The fundamentals of EDA remain the same and the 
concepts are still applicable.  The author apologizes for any confusion this may 
cause but please realize it is not practical to update our guidebooks every time a 
new software version is released.  
A Note on Data Quality 
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Prior to performing EDA, the geoscientist must have confidence in the reliability and 
quality of the raw data.  This guidebook does not aim to cover the subject of 
sampling theory, quality assurance and quality control (QA/QC), or the practice of 
database management.  The old adage “garbage in – garbage out” holds especially 
true for data, data analysis, and geological interpretations.  All too often geoscientists 
must deal with historic data of questionable quality due to myriad reasons.  There is 
no point is wasting one’s time with complicated estimation methods, detailed 
interpretations, or attempting to make informed decisions from fundamentally flawed 
data.  
 
The guidebook assumes that by the time the reader is considering performing EDA, 
the data has already passed the fundamental checks for quality and applicability.  If it 
has not, it is suggested to not bother with EDA but focus time and efforts on first 
obtaining a reliable and validated dataset.  Only when you “tick this box” will the 
outputs and inferences learned through performing EDA be of any value.  
 
I hope you enjoy this guidebook and find it useful in analyzing and understanding 
your geoscience data.  For additional information on EDA and other geology-related 
topics, be sure to visit www.mininggeologyhq.com for articles and references.  
 
Sincerely,  
 
-Erik C. Ronald, PG 

 
 

 “He [the geologist] uses statistics as a drunken man uses lamp posts, 
for support rather than for illumination. “ 

- Andrew Lang (1844 – 1912), with minor modification, of course. 
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1 Null Values and Data Gaps 
	

The	first	step	of	performing	EDA	on	geoscientific	data	is	to	ensure	the	data	is	suitable	for	
correctly	calculating	univariate	(single	variable)	and	bivariate	(comparing	two	variables	to	each	
other)	statistics.		This	initial	step	can	also	be	thought	of	as	data	“cleaning”.	

a) Identify	which	values	are	truly	zero.		The	difference	between	zero	and	null	is	an	
important	distinction	and	has	drastic	implications	on	statistical	outputs.		A	value	of	zero	
means	you’ve	measured	a	sample	and	the	result	was	0.00	(this	is	highly	unlikely)	while	a	
null	value	simply	means	no	data	is	available	for	that	particular	sample	or	interval.		
Spreadsheets	may	show	a	blank	or	a	0	so	it’s	critical	to	know	and	understand	the	
difference.		In	Excel®,	zero	means	zero	and	blank	means	null.			
	
It	is	common	practice	in	database	management	to	replace	a	blank	cell	with	a	designated	
null	value.		In	geology	specifically,	it	is	standard	for	a	null	values	to	be	represented	as:	“‐
99”,	“‐9”,	or	“‐1”.		The	reader	can	easily	imagine	what	a	few	“‐99”	values	can	have	on	
sample	statistics	so	it	is	important	to	convert	all	null	values	to	a	blank	cell	prior	to	
performing	EDA	in	Excel®.	
	

													TIP:	Use	Find>Replace	(Ctrl+F	>	Replace	tab)	to	change	all	“null”	values	to	a	blank	cell.		

	
	

b) Ensure	you’re	not	mixing	numeric	and	character	values.				There	may	be	character	values	
used	when	reporting	raw	data	values	from	a	laboratory	that	are	below	the	equipment’s	
ability	to	detect	such	as	“nil”,	“n/a”,	“<mdl”	or	“bdl”.		Occasionally,	this	information	is	
directly	entered	into	a	database	resulting	in	the	mixing	of	character	and	numeric	fields.		
Some	fields	are	obvious	as	to	their	meaning	but	others	are	not.		With	a	bit	of	luck,	there	
is	a	translation	table	available.		Either	way,	EDA	requires	numeric	values	to	calculate	
statistical	values.		All	character	entries	need	to	be	modified	to	be	either	a	null	value	
(blank	cell)	or	modified	accordingly	to	be	numeric.			
	

c) Determine	and	document	how	you	handle	values	below	or	above	detection	limit.		When	a	
sample	result	is	listed	below	laboratory	testing	limits,	often	the	lab	will	provide	a	code	
stating	this	fact.		As	was	mentioned	in	part	b)	above,	values	such	as	“<mdl”,	“trace”,	and	
“bdl”	commonly	all	translate	to	“below	the	laboratory	detection	limit”.		There	are	a	few	
methods	of	handling	these	data	so	whichever	is	chosen,	supporting	documentation	must	
outline	the	“what	and	why”.		In	lower	detection	cases,	it	is	acceptable	practice	to	replace	
the	“bdl”	character	with	a	numeric	value	equal	to	half	the	detection	limit.		Therefore,	for	
an	element	with	a	detection	limit	of	0.05,	you’d	replace	all	“bdl”	values	with	0.025.		This	
will	introduce	bias	to	your	data	and	many	pure	statisticians	will	not	agree	but	as	a	
geoscientist,	you’re	likely	more	concerned	with	knowing	the	value	is	very	low	but	not	
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zero	and	simply	live	with	the	introduced	bias.		In	some	cases,	a	value	may	be	returned	as	
“above	detection	limit”.		Though	not	as	common,	careful	consideration	must	be	taken	to	
ensure	these	samples	are	flagged	for	re‐testing	and	the	final	decision	on	how	to	manage	
the	data	is	clearly	documented.		
	

d) Data	gaps	are	common	when	dealing	with	drilling	programs	where	samples	are	
collected	on	regular	intervals	down	hole	using	“FROM”	and	“TO”	values.		Missing	
intervals	aren’t	detrimental	(as	long	as	they’re	not	replaced	with	0.00)	though	some	
geoscientists	insert	null	values	into	those	intervals	to	recognize	a	missing	interval.		This	
is	important	for	good	data	management	as	the	insertion	of	a	null	value	clearly	indicates	
a	sample	was	not	collected	or	tested.		Beyond	that,	refer	to	part	a)	above	and	ensure	all	
null	values	are	replaced	with	a	blank	cell	prior	to	performing	EDA.		

	

e) Significant	figures.		It	should	be	noted	that	significant	figures	can	be	a	concern	when	data	
has	been	“well‐traveled”	through	various	software	packages.		In	some	cases,	either	due	
to	deliberate	reduction	or	software	rounding,	the	significant	figures	of	data	values	are	
erroneous.		This	can	easily	give	a	false	sense	of	perceived	accuracy	or	cause	biases	in	the	
data	when	historic	values	have	significantly	different	detection	limits	due	to	different	
generations	of	testing,	different	testing	methods,	or	different	laboratories.			
It’s	always	advisable	to	review	the	raw	laboratory	or	original	source	data	to	understand	
the	appropriate	level	of	data	accuracy.		For	instance,	dealing	with	major	oxide	X‐Ray	
Fluorescence	(XRF)	data	which	is	precise	to	the	nearest	0.1	percent	in	a	dataset	
combined	with	Inductively	Coupled	Plasma	(ICP)	data	for	the	same	element	that	is	
accurate	to	the	nearest	0.1	ppm	can	bias	many	output	statistics.			
	

f) Overlapping	intervals	in	drilling	data.		It	can	be	a	common	error	in	drilling	datasets	for	
FROM	and	TO	intervals	to	overlap.		The	cause	is	typically	due	to	the	“fat	finger”	of	
human	error	when	entering	data	but	these	issues	will	result	in	problems	if	attempting	to	
make	interpretations,	inferences,	or	simply	enter	the	data	into	mine	planning	software.	
	
Overlapping	intervals	can	be	a	challenge	to	identify	in	large	datasets.		In	the	case	of	
drilling	data,	ensure	a	LENGTH	field	is	entered	which	is	simply	the	“TO”	minus	the	
“FROM”	value.		Performing	EDA	on	this	LENGTH	field	can,	in	many	instances	identify	
overlaps.		Another	method	is	to	simply	sort	the	FROM	data	from	smallest	to	largest	per	
drill	hole	and	chart	the	data	on	a	scatterplot.		There	are	likely	a	dozen	potential	solutions	
for	an	issue	like	this	that	can	be	investigated	further	by	using	the	steps	and	tools	
introduced	in	this	guidebook.		 	

FROM TO AU FROM TO AU

0 2 0.004 0 2 0.004

2 4 0.025 2 4 0.025

4 6 0.314 4 6 0.314

8 10 0.071 6 8 ‐99

8 10 0.071
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2 Sort and Filter  
The	Sort	&	Filter	function	in	Excel®	is	a	powerful	means	of	interrogating	data	which	is	accessed	

from	Home	>	Sort	&	Filter	>	Filter	 	(or	Ctrl	+	Shift	+	L).		It’s	one	of	the	quickest	ways	to	
find	those	pesky	negative	or	null	values,	along	with	errors	in	your	data	range.		When	you	use	
this	feature	on	categorical	data,	it’s	easy	to	find	those	misspellings	from	1979	or	the	creative	
codes	your	summer	student	decided	to	add	to	the	database.		

1) Arrange	the	data	into	columns	with	headers	in	the	first	row.	
2) Select	the	entire	worksheet	using	Ctrl+A	or	the	corner	box	between	row	1	and	column	A,	

then	click	the	Home	>	Sort	&	Filter	>	Filter	button.		The	result	will	be	that	each	column	
will	have	a	small	dropdown	arrow	next	to	it.			

3) Click	on	the	dropdown	arrow.		All	the	data	is	shown	with	a	tick	box	to	show	or	hide	the	
data.	

	 	
4) Scroll	through	the	data	or	use	the	Number	Filters	option	to	be	a	bit	more	creative.		The	

latter	is	recommended	for	large	datasets.	

!  A word of caution when using Sort & Filter: Be careful when using filters on multiple columns at 

once as this hides data and can easily result in a confusing mess.  It’s recommended to keep things 
simple on the initial pass of data inquiry.  Once you’ve interrogated individual variables then explore 
data groupings by adding your own columns and creating a Pivot table.  This is ideal for interrogating 
data by geology, rock type, zone, or other designation.   
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3 Analysis ToolPak 
Excel®	comes	with	a	nice	little	add‐in	called	the	Analysis	TookPak.	Excel®	2016	and	possibly	
future	versions	appear	to	be	incorporating	more	statistical	analyses	options	in	the	standard	
loaded	software	including	the	ability	to	calculate	histograms	directly	from	the	Chart	options.		As	
this	latest	version	of	Excel®	is	being	released	in	the	same	year	as	this	guidebook,	it	is	assumed	
the	reader	is	working	with	an	earlier	version	thus	requiring	the	add‐in.			

The	Analysis	Toolpak	add‐in	does	not	come	automatically	loaded	so	you’ll	need	to	activate	it	as	
follows:	

1) Click	on	the	File	>	Options	(located	at	the	bottom	of	the	menu)	

In	older	versions,	you	may	need	to	use	the	Microsoft	Office	Button	 .	
	

2) Click	Add‐Ins,	then	in	the	Manage	field	at	the	bottom,	select	Excel	Add‐ins.		

 
3) Click	Go.	
4) In	the	Add‐Ins	available	box,	select	the	Analysis	ToolPak	check	box,	and	then	click	OK.	
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TIP:		If	the	Analysis	ToolPak	is	not	listed	in	the	Add‐Ins	available	box,	click	Browse	to	locate	
it	on	your	internal	hard	drive	under	Programs.		

Once	the	Analysis	ToolPak	is	loaded,	the	Data	Analysis	command	is	available	in	the	DATA	>	
Analysis	portion	at	the	top	of	the	screen	(look	to	the	far	right).		

	

	

Many	of	the	proceeding	sections	assume	you’ve	successfully	loaded	the	Analysis	Toolpak.		Only	
the	more	commonly	used	menu	items	in	the	ToolPak	are	described	in	this	Guidebook.		It	is	
always	encouraged	to	explore	other	menu	items	and	utilize	the	Help	function	or	simply	perform	
an	internet	search	on	terms	of	interest	to	gain	additional	background	and	understanding	as	to	
whether	other	statistical	tests	will	be	beneficial	for	your	particular	dataset.		

	

TIP:	There	are	third‐party	Excel®	add‐ins	available	to	perform	various	statistical	data	
analyses.		Each	has	its	merits	and	should	be	investigated	further	if	you	plan	on	performing	
more	rigorous	data	analysis	using	Excel®	in	the	future.		There	are	a	variety	of	hyperlinks	
available	to	Excel®‐based	statistical	add‐ins	available	at	
www.mininggeologyhq.com/resource‐geology	
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Additionally,	most	professional	geoscientists	have	access	to	geological	modeling,	mapping,	and	
planning	tools	that	likely	include	a	statistical	analysis	package.		It	is	up	to	the	individual	as	to	
their	preference	and	needs	but	the	Analysis	Toolpak	does	provide	an	excellent	option	at	no	
additional	cost	along	with	the	ability	to	output	familiar	charts	and	tables.		
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4 Descriptive Statistics 
The	first	three	steps	in	this	guidebook	have	prepared	us	for	performing	EDA.		Now	the	first	type	
of	EDA	covered	is	calculating	univariate	statistics.		The	Descriptive	Statistics	option	in	the	
Analysis	Toolpak	is	an	easy	way	of	calculating	multiple	statistical	properties	such	as	the	mean,	
maximum,	minimum,	and	other	descriptors	quickly	for	either	a	single	or	for	multiple	variables.	

1. Arrange	data	in	columns	by	variable.		
2. Click	DATA	>	Data	Analysis	
3. Select	Descriptive	Statistics	from	the	menu	then	click	OK.			

	
	

4. Select	the	data	by	using	the	Input	Range.		This	can	be	a	single	variable	(as	shown	below	
where	column	D	includes	all	the	data	of	interest)	or	select	multiple	variables	at	once.		
When	multiple	variables	are	selected,	Descriptive	Statistics	will	calculate	univariate	
statistics	for	each	variable.		Performing	bivariate	or	multivariate	analyses	is	addressed	
in	later	sections.			

5. Tick	the	Labels	in	first	row	box	if	you’re	including	the	data	header	or	label.		
6. Next,	under	Output	options	select	where	you’d	like	the	summary	statistical	outputs	to	

go	–	same	page,	a	new	tab	or	an	entirely	new	workbook.		The	example	below	will	place	
the	output	table	in	the	same	worksheet	starting	at	cell	F4.	

7. Tick	the	Summary	statistics	box.		Click	OK.	

	

The	output	will	be	two	columns	(when	selecting	a	single	variable):	the	statistical	property	and	
the	corresponding	value.		It	is	recommended	to	adjust	your	significant	figures	as	the	default	
output	returns	an	unreasonably	large	amount	of	figures	for	some	items.			
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Mean	is	the	arithmetic	average	and	a	value	most	people	are	familiar	with	when	considering	the	
average	value	of	a	data	population.		

Standard	Error	(SE)	is	calculated	by	dividing	the	standard	deviation	(δ)	by	the	square	root	of	
the	total	number	of	samples	(count).		The	SE	can	indicate	how	close	the	sample	mean	is	from	the	
“true”	population	when	you	consider	your	data	represents	merely	a	small	sample	of	a	greater	or	
“true”	population.		In	other	words,	if	you	have	a	small	number	of	samples	and	a	high	SE,	it’s	
likely	your	mean	would	be	different	if	you	doubled	or	tripled	your	sample	count.		If	your	SE	is	
small,	it	can	be	thought	of	as	having	higher	confidence	in	your	mean	even	if	you	collect	more	
samples	from	that	population.		To	use	an	example,	if	you	collected	just	four	samples	from	a	
highly	variable	conglomerate	for	grain	size,	chances	are	your	mean	grain	size	isn’t	that	
representative	of	the	entire	Formation	or	unit.		Therefore,	in	this	particular	case	the	SE	would	
be	high	relative	to	the	mean.		

The	Median	(50th	percentile,	cumulative	frequency	=	0.5,	or	middle	quartile)	is	the	value	half	
way	from	the	minimum	and	maximum	values	in	the	population.		The	median	tends	to	be	more	
stable	as	it	is	not	as	susceptible	to	extreme	outliers	as	the	mean.		In	a	case	where	there	is	a	large	
difference	between	the	Mean	and	Median	it’s	a	good	indication	of	the	presence	of	outliers	in	the	
data	population.	

The	Mode	is	the	most	common	number	in	your	dataset.		It	can	also	be	thought	of	as	the	number	
having	the	highest	likelihood	of	occurring	in	your	data.		Typically	in	geoscientific	data,	the	mode	
isn’t	terribly	valuable	as	most	geoscientists	are	concerned	with	average	values	or	the	average	
above	a	particular	cut‐off	or	threshold.		

Sample	Standard	Deviation	(δ)	and	Variance	(δ2)	are	measures	of	data	dispersion.		They	
measure	the	spread	of	data	across	the	sample	distribution.		The	main	differences	are	the	units.		
Standard	deviation	is	expressed	in	the	original	data	units	thus	most	people	find	this	easier	to	
understand	than	a	square	of	units.		Variance	is	more	commonly	used	in	geostatistical	
calculations.	

Kurtosis,	though	sounding	like	a	bad	disease,	it	is	a	measure	of	the	shape	of	the	distribution	or	
the	peakedness	of	the	curve.		Negative	kurtosis	can	be	an	indicator	of	the	presence	of	two	
populations	of	data	with	different	means	while	positive	kurtosis	can	indicate	two	populations	
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with	different	standard	deviations.		In	many	cases,	high	kurtosis	is	the	result	of	very	low	
variability	of	a	sub‐population	or	grouping	of	data.		

	

Skewness	provides	an	indication	of	the	data	distribution	shape.		Typically	this	is	easier	to	
understand	once	you	can	look	at	a	graphical	output	of	a	histogram	or	frequency	distribution.		
The	Coefficient	of	Skewness	or	asymmetry	is	a	measure	of	the	shape	of	the	distribution	and	
tail:	

Positive	value	(+)	means	it	has	a	long	tail	of	large	values.	

Negative	value	(‐)	means	it	has	a	long	tail	of	small	values.	

Zero	value	means	the	distribution	is	perfectly	symmetrical	(mean	~	median).	

	

A	positively	skewed	distribution	is	common	in	geochemistry	where	the	long	“tail”	may	
represent	outlier	data	of	rare	high‐concentrations	of	trace	elements	(such	as	As	or	Au)	while	the	
majority	of	the	distribution	is	diluted	or	dispersed	in	the	system.		The	opposite	may	occur	with	
negatively	skewed	data	but	for	major	elements	or	oxides.		For	example,	SiO2	in	a	granitic	
intrusive	system	would	be	negatively	skewed.	

	

	

Range,	Minimum,	and	Maximum	are	obvious	as	to	what	they	represent.		It’s	always	a	good	
idea	to	check	your	data	limits	for	what	makes	sense	as	this	is	usually	one	of	the	first	indications	
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of	the	presence	of	assay	values	below	the	detection	limit,	errors,	or	coordinates	in	the	middle	of	
the	Pacific.		

The	Count	and	Sum	hopefully	don’t	require	further	explanation.		The	count	is	important	to	note	
especially	when	dealing	with	grouped	or	domained	data	sets.		In	many	cases	when	too	many	
data	sub‐divisions	are	used,	such	as	in	stratigraphy,	the	count	per	division	becomes	small	thus	
resulting	in	high	SE	and	lowering	the	confidence	in	the	statistics.		The	Sum	is	rarely	used	in	most	
cases	for	geology‐related	data.		

Though	not	included	in	Excel®	Descriptive	Statistics,	it’s	recommended	to	quickly	calculate	the	
Coefficient	of	Variation	(CV).		The	CV	is	expressed	as	a	percentage	and	is	equal	to:	CV	=	
standard	deviation	(δ)	/	mean	(m).		As	a	rule	of	thumb,	data	populations	with	CV	greater	than	1	
tend	to	comprise	multiple	populations	or	contain	outlier	data.		CV	is	a	nice	check	as	to	whether	
more	detailed	outlier	analysis	will	be	required	or	the	appropriateness	of	sub‐grouping	of	data.	
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5 Histogram and Frequency Distribution 
Histograms	graphically	represent	the	distribution	of	the	numeric	data	population.		Prior	to	
creating	a	histogram	(or	frequency	distribution	diagram)	you’ll	need	to	have	all	the	data	for	a	
particular	variable	of	interest	in	a	single	column	and	the	bins	in	a	second	column	(see	figure	in	
step	3	below).		A	bin	or	class	interval	is	how	your	data	will	be	divided	into	groups		Bins	must	be	
consecutive	and	non‐overlapping	intervals	of	the	variable	but	do	not	need	to	be	the	same	size.		
It’s	helpful	to	review	the	Descriptive	Statistics	to	determine	the	bin	size	based	on	the	Range,	
Standard	Deviation,	or	a	particular	set	of	parameters	you	have	such	as	cut‐off	grades	or	
thresholds.	

TIP:		A	rule	of	thumb	for	bin	size	is	to	divide	the	range	by	roughly	half	the	standard	
deviation.		Alternatively,	many	statisticians	simply	chose	15‐30	bins	from	the	minimum	to	
the	maximum	values	then	adjust	accordingly.	

	

1. Determine	the	size,	number,	and	cut‐off	for	your	intervals	or	bins.		Enter	these	in	a	
column	(as	shown	below	under	Column	F:	bin).		

2. Select	DATA	>	Data	Analyzer,	then	select	Histogram	from	the	menu.		Click	OK.	
	

	
	

3. Choose	the	Input	Range	for	the	data	(ex.	column	D)	and	the	Bin	Range	(ex.	column	F).		
	

	
	

4. Choose	where	the	table	and	chart	will	be	placed	in	Output	options.		
5. Be	sure	to	select	Chart	Output	or	you’ll	simply	get	a	table	of	values.		
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6. Additionally,	it	may	be	helpful	to	click	the	Cumulative	Percentage	box	as	another	
means	of	visualizing	your	data.		Click	OK.	

7. The	output	will	be	a	table	and	graph	as	below:		
	

	
	

8. Now	modify	the	legend,	title,	axes	and	other	properties	of	the	histogram	chart	to	suit	
your	needs.		

9. If	you’d	like	to	remove	the	space	between	the	bars,	right	click	on	a	bar,	select	Format	
Data	Series	and	change	the	Gap	Width	to	0%.		

	

It’s	advisable	to	modify	your	bins	so	you	can	gain	an	appropriate	insight	into	the	data	
distribution.		If	the	bins	are	too	large	or	too	small,	the	distribution	may	be	difficult	to	interpret.		
It	is	common	practice	to	use	bins	of	equal	size	but	not	necessary.		When	determining	the	
frequency	above	a	threshold	or	cut‐off	you	may	have	all	values	under	the	threshold	in	a	single	
bin.			

The	figure	below	shows	a	normal	distribution	represented	as	a	histogram	(left)	and	a	cumulate	
percentage	distribution	(right).		These	are	the	same	distribution	but	merely	presented	in	
different	ways.		Additionally,	histograms	are	often	displayed	as	a	curve	instead	of	a	column	
chart.		Ultimately	it	is	up	to	you	to	decide	the	preferred	way	of	visualizing	the	data.		
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There	are	three	main	properties	of	a	histogram	to	consider	and	interpret:	

1) Shape	–	the	symmetry/asymmetry	of	the	frequency	distribution;	
2) Position	–	where	the	“average”	position	of	the	whole	distribution	is	along	the	scale;	
3) Dispersion	–	how	spread‐out	the	distribution	is	along	the	scale.	

If	you	recall	from	Descriptive	Statistics,	we	have	already	calculated	the	majority	of	statistical	
measures,	but	viewing	the	data	as	a	histogram	will	allow	for	a	better	understanding	of	the	data’s	
behavior	and	characteristics.		For	instance,	the	Mean,	Mode,	and	Median	all	inform	about	the	
position	of	the	distribution.		Dispersion	is	the	degree	of	variability	or	how	spread‐out	the	data	is	
along	the	x‐axis.	We	have	already	calculated	three	measures	of	dispersion	in	Descriptive	
Statistics.		These	being	the	standard	deviation,	variance,	and	range.		Lastly,	the	shape	is	
represented	by	the	skewness	and	kurtosis.			

In	some	cases,	the	distribution	may	exhibit	polymodal	distribution	such	that	there	is	more	than	
one	“hump”	in	the	data.		Commonly	in	geoscience,	data	contains	two	peaks	thus	we	use	the	term	
bimodal	distribution.		The	presence	of	a	polymodal	distribution	can	be	an	indicator	of	your	data	
containing	two	or	more	distinct	populations	with	different	means	that	should	likely	be	
separated	and	analyzed	individually.		

	

	

	 A	histogram	exhibiting	a	bimodal	distribution.	 	
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6 Quantiles 
It	can	be	informative	to	divide	your	sample	population	into	equal	parts	or	intervals.		These	
divisions	are	generically	termed	quantiles.		Common	divisions	include	100	parts	called	
percentiles,	ten	parts	called	deciles,	and	four	parts	called	quartiles.		The	most	common	are	
percentiles	(P)	and	quartiles	(Q).		Therefore	the	first	quartile	represented	by	Q1	is	equal	to	the	
25th	percentile	or	P25.			
	

1) Arrange	your	data	into	a	single	column.		
2) In	an	adjacent	cell,	type	in	the	=PERCENTILE	function.		This	function	requires	a	range	of	

data	followed	by	the	percentile	to	calculate	represented	as	a	decimal	from	0	to	1	(e.g.	
=PERCENTILE(A1:A526,0.3)		will	return	the	30th	percentile).		This	means	that	30%	of	
the	data	is	lower	than	the	value	returned	(ex.	29	as	shown	below).		

	

3) Quartiles	are	calculated	in	a	similar	way.		The	formula	is	=QUARTILE(range,quartile).		
For	example,	=QUARTILE(A1:A526,	3)	will	return	the	Q3,	third	quartile,	or	75th	
percentile.		The	second	value	in	the	formula	must	be	an	integer	from	0	to	4	realizing	that	
Q0	is	the	minimum,	Q2	is	the	median,	and	Q4	is	the	maximum.		

	

To	calculate	deciles	or	other	equal	parts	of	the	distribution,	simply	use	the	PERCENTILE	
function	with	the	appropriate	values	such	as	0.1,	0.2,	0.3	and	so	forth.		

TIP:		It	should	be	recognized	that	as	of	Excel®	2013,	the	software	has	three	methods	of	
calculating	percentiles	and	quartiles.		Microsoft™	have	stated	that	the	classical	PERCENTILE	
and	QUARTILE	functions	used	in	previous	versions	should	not	be	used.	Instead	it	is	
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recommended	to	use	the	*.INC	or	*.EXC	functions	added	with	Excel®	2013	and	available	in	
newer	versions.			

If	you	need	to	repeat	calculations	from	historic	Excel®	versions,	the	PERCENTILE	and	
PERCENTILE.INC	returns	the	same	values.		PERCENTILE.INC	is	an	inclusive	function	
whereby	for	any	value	in	the	percentile	from	zero	to	one	(0	–	1)	you	will	get	a	result.		
PERCENTILE.EXC	will	return	an	error	if	you	use	a	value	which	is	outside	the	range	for	the	
data	set.		When	in	doubt,	use	PERCENTILE.INC.		
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7 Interquartile Range and Outliers 
One	method	of	interrogating	the	variability	of	a	data	population	is	by	using	the	interquartile	
range	or	IQR.		As	stated	in	the	previous	section,	quartiles	break	the	data	distribution	into	four	
equal	parts	between	these	five	values:	Q0	(minimum	value),	Q1	(25th	percentile),	Q2	(median),	
Q3	(75th	percentile)	and	Q4	(maximum	value).		The	equation	for	calculating	the	IQR	=	(Q3‐	
Q1).			

When	a	data	population	has	outliers	or	is	skewed,	the	total	range	may	not	be	a	good	indicator	of	
the	variability	where	the	IQR	can	be	more	helpful	as	it	covers	50%	of	the	population	–	from	the	
25th	to	75th	percentile.		Another	useful	aspect	of	the	IQR	is	the	ability	to	calculate	and	identify	
outliers	and	extreme	outliers.		The	following	equations	are	used	to	determine	the	thresholds	at	
which	samples	are	considered	outliers	or	extreme	outliers:		

Outliers:	

Upper Outliers = Q3 + 1.5 *(IQR)	
Lower Outliers = Q1 – 1.5 *(IQR)	
	
Extreme	Outliers:	

Upper Extreme Outliers = Q3 + 3 *(IQR)		
Lower Extreme Outliers = Q1 – 3 *(IQR) 
	

The	IQR	and	outlier	definitions	are	straightforward	to	calculate	in	Excel®:	

1) Arrange	your	data	in	a	column	(shown	in	column	A	below).	
2) Use	the	QUARTILE.INC	function	as	described	in	the	previous	section	to	calculate	Q1	and	

Q3.		
3) Type	in	the	formula:	Q3	–	Q1	(=D3‐D2	in	example).		The	result	is	your	IQR.		

	

	
In	the	example	shown	above,	column	A	includes	100	random	numbers	between	1	and	100	(only	
the	first	15	are	shown).		The	minimum	value	is	1	with	the	maximum	of	100	(range	=	99).		In	this	
case,	our	test	for	outlier	and	extreme	outliers	returned	values	beyond	the	range	of	our	datasets.		
So	no	outliers	are	present	in	our	trial	data	from	column	A.		
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In	the	case	where	outliers	are	present,	the	definition	for	outlier	and	extreme	outlier	provides	a	
threshold.		All	values	beyond	the	threshold	are	considered	outliers.		It’s	up	to	the	geoscientist	
analyzing	the	data	as	to	whether	outliers	are	a	concern	or	not	but	they	should	be	identified	at	a	
minimum.		In	the	next	step,	we’ll	review	how	to	generate	a	Box	and	Whisker	plot	which	
produces	a	graphical	output	of	the	IQR	and	outlier	bounds.		
	
A	Note	on	Outliers:	
By	definition,	an	outlier	is	any	point	that	is	distant	or	distinct	from	the	rest	of	a	data	population.		
The	reasons	for	the	presence	of	an	outlier	vary	greatly	but	the	common	causes	are	errors	in	the	
data	(sampling,	laboratory,	or	otherwise),	poorly	grouped	data	so	there	are	actually	two	or	
more	populations	(contamination	from	another	zone),	or	just	highly	skewed	data	(such	as	high‐
nugget	Au	values).			
	
Some	statisticians	will	remove	outliers	from	a	sample	population	prior	to	calculating	statistical	
values	such	as	the	mean	and	variance	while	others	take	a	traditional	approach	and	include	
them.		Whichever	option	is	chosen	matters	less	than	ensuring	the	reasons	are	well	documented.		
In	mining	and	exploration	of	metal	deposits,	the	industry	is	focused	on	finding	and	exploiting	
outliers	and	anomalous	metal	occurrences.		Deposits	of	economic	significance	are	by	definition	
outliers.		Industry	professionals	must	realize	that	in	low‐concentration	metal	exploration,	the	
outliers	of	the	rare	extreme	high	grade	samples	are	of	significant	interest	and	typically	contain	
the	highest	total	metal	per	tonne	and	therefore	should	not	be	simply	discarded	due	to	statistical	
conformity.		In	short,	caution	should	be	taken	before	discarding,	top‐cutting,	or	reducing	the	
influence	of	high‐yield	variables	but	the	impact	of	the	high	magnitude	samples	on	a	general	data	
population	must	always	be	clearly	understood.		Conversely,	if	extreme	outlier	deleterious	
variables	occur	within	a	high	grade	zone,	the	outlier	values	may	skew	the	average	deleterious	
variable	to	exceed	a	threshold	therefore	reducing	the	entire	high‐grade	zone	to	waste.	One	must	
always	be	careful	when	dealing	with	highly	skewed	data	and	outliers	and	understand	their	
effects	on	statistical	outputs.			
	
The	presence	of	outlier	data	has	significant	implications	on	various	estimation	techniques	which	
assume	an	underlying	normal	distribution	(such	as	Ordinary	Kriging).		These	estimation	
techniques	are	very	sensitive	to	the	presence	of	outliers	data.		Outliers	can	greatly	bias	the	
spatial	continuity	of	a	variable	resulting	in	erroneous	estimation.		There	are	many	methods	of	
dealing	with	this	in	regard	to	estimation	which	are	beyond	the	scope	of	this	guidebook.		At	
minimum,	geoscientists	must	identify	and	document	the	presence	and	nature	of	outlier	data	and	
appreciate	their	impact	on	EDA.		
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8 Box and Whisker Plots 
Box	and	Whisker	plots	are	wonderful	graphs	that	display	a	great	deal	of	statistical	information	
in	one	place.		The	rather	silly	name	is	in	fact	perfectly	descriptive;	the	chart	is	literally	made	up	
of	a	box	and	a	“whisker”	on	either	side	representing	the	outlier	thresholds.	These	charts	include	
the	median,	Q1,	Q3,	IQR,	and	outlier	thresholds.		The	good	news:	if	you	are	using	Excel®	2016	
then	Box	and	Whisker	plots	are	included	as	a	ready‐made	chart.		The	bad	news:	if	you	using	any	
version	prior	to	2016,	it	will	be	a	lot	of	manual	work.			
	
In	Excel®	2016:	
	

1) Arrange	the	data	into	columns.		Select	the	variable	or	variables	of	interest.	 
2) Click	Insert	>	Insert	Statistic	Chart	>	Box	and	Whisker 

 

 
3) To	modify	the	chart	options.		Right	click	on	a	box	to	select	then	click	Format	Data	

Series.		
4) In	the	Format	Data	Series	pane,	with	Series	Options	selected,	make	the	changes	that	

you	want.	

 
5) The	resultant	graphic	will	be	a	Box	and	Whisker	displaying	mean,	median,	Q1,	Q3	and	

outlier	thresholds.			
	
	
Excel®	2013	and	previous	versions:	
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This	example	is	from	a	randomly	generated	dataset	of	100	values.		The	process	of	graph	
creation	is	quite	manual	and	time	consuming	but	results	in	an	acceptable	“work	around”	to	
generate	a	Box	and	Whisker	plot	in	Excel®	2013	or	earlier	version.		It	is	not	recommended	to	
manually	create	Box	and	Whiskers	if	you	have	a	lot	of	variables	unless	you	don’t	mind	spending	
hours	manipulating	charts.			

1) Calculate	the	required	statistics	if	you	haven’t	already	through	Descriptive	Statistics.		
This	includes:	Q0	(minimum),	Q1,	Q2	(median),	Q3,	Q4	(maximum),	Lower	Outlier	(L.O.),	
and	Upper	Outlier	(U.O.).		In	this	example,	the	raw	data	is	located	in	column	A.	

	
	

2) Next,	calculate	the	differences	between	these	values	as	shown	in	the	table	below	to	
generate	the	chart	output.		

	
	

3) Highlight	the	cells	as	shown	in	yellow:		

	
4) Go	to	Insert	>	Chart.		Click	the	See	All	Charts	button	(click	the	little	arrow	in	the	lower	

right	corner)	and	find	the	All	Charts	>	Bar	>	Stacked	Bar	chart	as	shown:		
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5) 	Click	OK.	
6) The	next	step	involves	adding	the	Lower	Outlier	and	Upper	Outlier	“whiskers”	to	the	

chart.		Select	the	Q1	box	on	the	chart	and	click	the	Chart	Elements	button	 	located	
on	the	right	side	of	the	chart.		

	
	

7) Check	the	Error	Bars	option	and	click	the	small	arrow	to	the	right	>	More	Options.		
	

8) This	opens	the	Format	Error	Bars	options.		As	the	goal	here	is	to	enter	the	lower	
“whisker”,	we’ll	click	the	Minus	toggle,	End	Style	to	be	a	Cap,	and	select	the	Error	
Amount	to	be	Custom	as	shown	below.	



	 23

	
9) Click	the	Specify	Value	in	the	Custom	field.		Leave	the	Positive	Error	Value	field	as	

default.		Modify	the	Negative	Error	Value	to	be	equal	to	the	Q1‐L.O.	value	from	the	data	
table	as	shown	below:		

	
10) Click	OK.	

	
11) The	resultant	chart	will	resemble:	

	
12) 	Now	repeat	the	steps	for	the	Q3‐Median	box	(grey	box	in	example)	but	keep	in	mind,	

this	time	we’re	concerned	with	the	Positive	Error	Value	that	will	equal	the	U.O.‐Q3	
from	our	table.		

	

13) 	Upon	completing	that	step,	the	chart	should	resemble:		
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14) 	The	next	steps	are	to	remove	the	box	fill	and	modify	the	borders	for	our	three	data	
points.		To	start,	right	click	on	the	Q1	data	box	(blue	area	in	example)	>	Format	Data	
Series.		Modify	these	options	to	be	No	fill	and	No	line	as	shown:		
	

	
	
	
	

15) 	Next,	modify	the	other	two	areas	to	be	Fill>No	fill	and	Border>Solid	line.		The	
resultant	chart	should	resemble:		
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16) 	Lastly,	it’s	good	practice	to	modify	your	data	title,	Chart	title,	legend	and	any	other	
characteristics	of	the	chart	to	suit	your	needs.			

	

As	mentioned	previously,	this	chart	may	not	be	considered	by	some	to	be	a	true	Box	and	
Whisker	as	the	Mean	is	not	represented	and	outlier	samples	are	not	shown	on	the	graph	(just	
the	thresholds).		Regardless,	this	chart	can	illustrate	a	great	deal	of	information	about	the	data	
distribution	and	is	useful	when	comparing	multiple	variables	side	by	side	or	showing	a	cut‐off	
grade/threshold	value	visually	compared	with	the	median,	Q1,	Q3,	and	other	values.			

The	figure	below	shows	how	similar	statistical	values	for	a	data	distribution	are	represented	on	
both	a	Box	and	Whisker	and	a	frequency	distribution.		The	x‐axis	scale	displays	the	number	of	
standard	deviations	in	the	distribution.		This	figure	is	useful	in	visualizing	a	data	population	and	
the	various	ways	of	representing	the	same	data	and	understanding	the	relationships	between	
the	various	statistical	parameters.		
	

	

0 20 40 60 80 100

1

Chart	Title
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9 Spatial Data Maps 
The	second	type	of	EDA	covered	in	this	guidebook	is	spatial	EDA.		As	the	majority	of	geoscience	
data	contains	a	value	and	location	associated	with	the	sample,	understanding	how	data	behaves	
spatially	is	important.		Spatial	attributes	can	be	drill	collars,	surface	geochemical	samples,	or	
water	sample	collection	points.		When	interrogating	data,	it	is	important	to	not	only	understand	
the	data	values	and	statistical	properties	of	a	variable	but	also	to	have	confidence	in	the	
sample’s	location.		This	step	provides	a	check	using	a	spatially	located	(X,	Y,	and	Z)	dataset	to	
quickly	investigate	for	anomalous	or	erroneous	locations	by	creating	spatial	data	maps.			
	

1) Arrange	your	data	in	columns	with	identifier,	X	(or	easting),	Y	(or	northing),	and	Z	(or	
elevation/RL).			

2) Select	your	X	and	Y	data	columns	(columns	B	and	C	in	example	below).		
3) Go	to	Insert	>	Chart	>	Scatter	and	select	the	chart	of	individual	points:		

	
4) A	scatter	plot	of	your	X	versus	Y	data	should	appear.		Format	the	grid,	axes,	title	and	

other	attributes	to	your	preference	by	Chart	Tools	>	Design	and	Chart	Tools	>	Layout.		
	

	
	

5) In	the	case	of	the	data	shown	above,	we	can	observe	one	suspicious	point	that	is	not	
close	to	the	others.		From	a	quick	glance	of	the	raw	data	in	the	table,	it	would	be	difficult	
to	find	this	anomaly.		Right	click	on	the	outlier	point	and	then	select	Format	Data	
Labels.	
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6) Under	Label	Options,	click	either	the	X	value	or	Y	value	so	you	can	find	the	point	in	the	
table.		In	the	case	above,	it	displays	the	Y‐value	of	7499785.			

7) To	find	this	sample,	select	the	Y	values	(column	C	in	example),	then	click	Find	&	Select	>	
Find	to	see	the	SampleID	of	this	suspect	Y	value	(SampleID	=	AA009).	In	this	case,	the	
anomalous	point	represents	a	survey	station	that	should	be	deleted	from	the	data.			
	

TIP:	If	the	location	of	data	is	suspect	and	cannot	be	validated	upon	further	investigation,	it	
is	common	practice	to	either	increase	the	risk	rating	on	the	data	or	flag	it	for	omission	
during	interpretation.		In	many	cases	it	is	better	to	have	no	data	than	have	erroneous	data	
biasing	an	interpretation.	Ultimately,	the	geoscientist	should	make	the	call.	

	
Next,	we’ll	review	a	method	of	reviewing	the	Z	or	elevation	values	visually.		This	is	a	quick	check	
but	can	save	a	great	deal	of	time	later	on	if	outliers	or	errors	are	discovered.	You	don’t	want	to	
start	interpreting	cross‐sections	with	drill	holes	floating	in	space	or	samples	located	50m	in	the	
air.			
	

1) Select	only	your	elevation	(Z)	data	as	shown	in	column	D	above.		
2) Go	to	Insert	>	Chart	>	Scatter	and	select	the	chart	of	individual	points	as	before.		
3) A	scatter	plot	of	your	Z	versus	data	count	will	appear.		Format	the	grid,	axes,	title	and	

other	features	to	your	preference	by	Chart	Tools	>	Design	and	Chart	Tools	>	Layout.		
4) Right	click	on	each	axis	and	modify	the	Axis	Options	so	your	Minimum	and	Maximum	

extents	are	set	to	Fixed.		Then	enter	an	appropriate	value	so	your	data	is	evenly	spread	
across	the	graph.		

	
	

5) The	resulting	graph	will	show	the	elevation	spread	for	your	samples.		In	the	example	
below,	most	samples	lie	between	~600m	and	635m	but	there’s	one,	possibly	two	
samples	considerably	higher	(659m	circled	in	red).		This	point	was	a	drill	collar	entered	
in	error	that	should	have	been	629m.		
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Ensuring	the	data	is	correctly	located	may	not	be	clear	when	performing	descriptive	statistics	
but	should	be	included	in	any	EDA	program.		As	geoscientists,	we	are	concerned	with	not	only	
the	values	of	our	data	but	where	they	are	located	in	space	and	how	they	relate	to	one	another	or	
their	spatial	continuity.		Determining	errors	now	is	a	critical	step	prior	to	calculating	any	
geostatistical	parameters	or	understanding	a	variable’s	spatial	continuity	for	future	estimation.	
	
Bubble	Charts:	
	
Bubble	charts	are	effective	means	of	representing	spatial	data	with	corresponding	magnitude	of	
data	value.		The	features	of	Bubble	charts	are	limited	but	useful.		They	are	most	beneficial	in	
spatial	data	assessments	when	displaying	a	relatively	small	data	population	as	the	chart	quickly	
becomes	unreadable	with	too	many	bubbles	or	circles.		Bubble	charts	require	samples	to	have	
three	data	associated	with	it	such	as	X,	Y,	and	a	numeric	assay	value.		These	are	excellent	in	
reviewing	surface	geochemical	datasets	or	any	other	2D	data	where	understanding	spatial	
trends	in	magnitude	are	required.			
	

1) Arrange	your	data	into	three	columns	with	X	(or	easting),	Y	(or	northing),	and	numeric	
value.		

2) Highlight	the	data	of	interest,	then	go	to	Insert	>	Other	Charts	>	Bubble	

		

	
3) Select	either	the	2D	or	3D	bubbles.		
4) The	output	chart	will	show	the	X	and	Y	locations	with	a	bubble	of	relative	size	for	the	

numeric	variable	(in	this	case	Cu	in	ppm).		
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5) (Optional)	The	x‐	or	y‐axis	may	require	modification	if	a	bubble	is	located	near	either	
axis	resulting	in	negative	axis	values.	

	
	

6) Right	click	on	an	axis	and	select	Format	Axis.	
7) Under	the	Axis	Options,	modify	the	Minimum	to	be	Fixed	and	replace	the	value	to	0.	

	
The	Bubble	chart	allows	for	a	spatial	check	on	data	locations	along	with	the	ability	to	make	
inferences	on	how	the	sample	value	magnitude	is	related	to	direction	and	distance.		Reviewing	
the	Bubble	chart	above	showing	Cu	values	from	a	surface	sampling	program,	the	geoscientist	
can	make	the	observation	that	Cu	generally	increases	toward	the	northwest.		The	highest	
magnitude	sample	was	collected	at	the	end	of	the	surface	survey,	therefore	the	Cu	
mineralization	is	open	to	the	northwest.		This	information	is	valuable	in	planning	a	follow‐up	
sampling	campaign	or	providing	insight	into	future	drilling	locations	and	directions	toward	
increasing	Cu	values.		
	
Indicator	Maps:	

If	the	size	or	number	of	data	values	result	in	a	messy	or	difficult‐to‐read	chart,	indicator	maps	
may	be	a	solution.		Indicators	are	a	means	of	translating	the	data	by	applying	a	cut‐off	or	
threshold.		For	instance,	the	geoscientist	may	be	interested	in	surface	samples	above	a	
particular	metal	concentration	or	soil	with	a	contaminant	above	a	threshold.		First,	the	data	
must	be	translated	into	a	binary	form,	basically	think	of	it	as	whether	the	individual	sample	
value	is	either	above	or	below	a	cut‐off.		Each	data	will	have	X	and	Y	locations,	then	simply	a	
“yes”	or	“no”	as	to	whether	it	is	above	the	cut‐off	of	interest.		So	whether	you	chose	1	or	0,	
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“above”	or	“below”,	or	something	else,	it	doesn’t	matter	as	long	as	there	are	just	two	categories	
based	on	a	cut‐off.		Indicator	maps	work	best	when	selecting	multiple	cut‐offs	to	visualize	how	
the	data	behaves	as	cut‐offs	change.		See	below	for	an	example	using	the	same	Cu	data	from	
above.		

1) Arrange	the	data	in	columns	with	headers	X	(or	easting),	Y	(or	northing),	and	variable	of	
interest	(in	this	case	Cu	in	ppm).		

2) In	the	next	column	to	the	right,	place	the	header	for	the	desired	cut‐off	or	threshold	
values.		In	this	case	we’ll	consider	cut‐offs	at	2,500	ppm,	5,000	ppm	and	10,000	ppm.		
	

	
	

3) In	the	first	cell	under	the	Cutoff1(@2500)	cell,		type	“	=if(C2>=2500,1,0)”.		This	simple	
“if‐then”	statement	means	if	the	value	cell	C2	(Cu	concentration)	is	equal	to	or	larger	
than	2,500	ppm,	then	return	a	value	of	1.		If	it’s	less	than	2,500,	return	a	0.		Drag	this	
value	down	to	fill	in	the	rest	of	column	D	as	necessary.	

4) Repeat	step	3	for	Cutoff2	and	Cutoff3	changing	the	formula	appropriately	to	be	the	
desired	cut‐off	value.		The	resultant	table	should	resemble:	
	

	
	

5) The	next	steps	are	a	bit	manual	and	will	require	copying	the	tables	and	sorting	each	
dataset.		From	these,	we	will	create	three	new	tables	each	containing	the	X,	Y,	and	Cut‐
off	column	of	D,	E,	and	F	in	separate	tables.		

6) Select	all	the	data	in	each	new	table	then	click	Home	>	Sort	&	Filter	>	Custom	Sort.		
Sort	by	the	Cut‐off	column,	sort	on	values	in	order	largest	to	smallest	as	shown:		
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7) The	resultant	table	should	resemble	the	following	sorted	by	Cutoff1:		
	

	
	

8) Next,	select	only	the	X	and	Y	data	which	correspond	to	a	Cutoff1	=	1.		Then	Insert	>	
Chart	>	Scatter	with	only	Markers	plot.	The	resultant	chart	will	be	an	X‐Y	scatterplot	
displaying	the	values	above	the	cut‐off.			

9) Next,	add	the	values	below	the	cut‐off.		Ensure	the	scatterplot	is	selected,	then	go	to	
Design	>	Insert	Data.		Under	Legend	Entries	(Series)	>	Add	with	X	and	Y	values	
corresponding	to	the	below	cut‐off	values	(0)	from	the	table.		

	
	

10) Modify	the	default	marker	for	each	data	series,	title,	and	axes.		It	is	recommended	to	use	
a	square	with	the	above	cut‐off	values	(1)	in	red	and	the	below	cut‐off	(0)	in	blue.		The	
resultant	plot	will	resemble:	
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11) Repeat	the	previous	steps	to	create	scatterplots	for	Cutoff2	and	Cutoff3	
	

12) Plot	all	three	charts	together	and	it	is	easy	to	visualize	the	spatial	trends	in	Cu	
concentration	across	the	sampling	area.	
	

	
	

There	are	obvious	similarities	between	the	indicator	plots	and	the	Bubble	charts	though	the	
subtle	differences	are	valuable.		In	the	Indicator	maps,	the	increasing	Cu	trend	appears	to	be	
the	same	general	northwest	direction	but	once	the	10,000	ppm	cut‐off	is	applied,	a	northern	
trend	is	evident.		These	minor	differences	in	visualizing	data	can	provide	insight	into	
geological	interpretations	along	with	making	future	decisions	on	additional	sampling	
campaigns	or	other	evaluation	activities.		
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10 Bivariate Analyses: Correlations and Scatterplots 
The	third	and	final	type	of	EDA	covered	in	this	guidebook	is	bivariate	analyses.		Analyzing	and	
understanding	univariate	statistics	is	paramount	but	the	relationships	between	variables	can	be	
just	as	important.		Bivariate	statistics	is	simply	the	comparison	of	how	two	variables	correlate	to	
one	another.		When	we	discuss	correlation,	we’re	specifically	talking	about	Pearson’s	
correlation	coefficient.		This	is	defined	as	the	average	of	the	product	of	the	z‐score	of	the	
explanatory	and	response	variables.		For	the	sake	of	keeping	things	simple,	the	closer	the	value	
is	to	1	the	more	the	two	variables	are	positively	correlated	(i.e.	one	goes	up,	the	other	goes	up	
too).		Alternatively,	the	closer	to	‐1,	the	stronger	the	two	variables	are	negatively	correlated	(i.e.	
one	goes	up,	the	other	goes	down).		

When	there	is	a	strong	positive	or	negative	correlation	between	two	variables,	this	relationship	
can	be	extremely	important	in	understanding	variable	behavior	such	as	mineral	alteration	
assemblages,	enrichment/depletion	of	elements,	or	pathfinder	elements	for	exploration.		There	
are	implications	for	future	estimation	of	variables	as	well	when	there	is	a	strong	correlation	
between	variables.		The	field	of	multivariate	geostatistics	is	based	on	this	correlation	and	
ensuring	it	is	preserved	from	raw	data	through	to	estimated	models.	

1) Go	to	DATA	>	Data	Analysis	>	Correlation	and	click	OK.		
	

	
	

2) Select	your	data	of	interest	in	the	Input	Range.		In	the	case	presented	below,	there	are	
multiple	metal	concentrations	selected	in	columns	D	through	L.		These	data	comprise	
147	samples	each	1m	in	length.		All	data	are	presented	in	ppm.		
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3) Select	the	Output	options	for	summary	data	output	location.		
4) The	output	is	a	table	of	variables	across	the	X	and	Y	axes	with	the	correlation	coefficient	

displayed	in	the	matrix.		

	

5) It’s	helpful	in	visualizing	the	data	to	format	the	output	table.		An	easy	approach	is	to	use	
Conditional	Formatting.		Select	the	data	table	then	go	to	Home	>	Conditional	
Formatting.		There	are	a	variety	of	choices	but	common	options	include	Between…	and	
Greater	Than…	
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6) The	example	shown	below	uses	both	Greater	Than…	and	Less	Than...	to	assign	values	
of	>	0.6	and	<	‐0.6	to	highlight	metals	with	strong	positive	or	strong	negative	correlation	
coefficients.		

	

In	interpreting	this	table,	it	can	be	stated	that	there	are	high	positive	correlations	(>0.6)	
between	Cu:Au,	Se:Au,	Cu:Se,	and	Zn:Pb.		There	are	no	high	negative	correlations	(<	‐0.6),	and	
there	are	moderate	correlations	of	the	base	metals	Mo:Pb,	Mo:Zn,	and	Ag:Zn	(roughly	0.4	to	0.6).		
Many	variables	are	essentially	not	correlated	to	one	another.			

To	take	this	analysis	further,	a	scatter	plot	can	be	created	to	investigate	the	correlations	of	
variables	of	interest.		Here	we’ll	look	at	Cu	and	Se.		

1) Select	the	data	(columns	G	and	K	in	this	case).		Hold	down	the	Ctrl	key	to	select	multiple	
columns.		

2) Click	Insert	>	Charts	>	Scatter	with	Only	Markers	chart.		
3) Modify	the	title,	axes,	and	legend.		Alternatively,	choose	one	of	the	pre‐designed	formats	

located	under	Design	>	Chart	Layouts.	
4) Next,	we’ll	add	a	linear	regression	line	with	associated	formula	and	R2	value.		Right	click	

on	one	of	the	data	points	on	the	graph	and	select	Trendline	Options.	Then	select	
Linear	and	check	the	boxes	to	Display	Equation	on	Chart	and	Display	R‐squared	value	
on	chart.		
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5) The	resultant	graph	should	resemble:	

	

The	trendline	or	linear	regression	line	and	R2	value	provide	additional	information	to	quantify	
the	correlation	between	the	two	variables.		R‐squared	the	correlation	coefficient	(which	we	
already	calculated)	squared.		In	the	case	above,	that	is	0.82	*	0.82	=	0.6724.		Another	way	of	
looking	at	this	is	saying	that	about	two‐thirds	(67.24%)	of	the	variability	of	Cu	can	be	explained	
by	the	differences	in	Se	values	or	more	put	simply,	they	are	strongly,	but	not	perfect	correlated	
in	this	dataset.		

Now	let’s	review	the	slope	of	the	linear	regression	formula.		In	this	particular	case,	the	intercept	
is	fairly	meaningless	as	the	Se	and	Cu	values	approach	the	laboratory	detection	limits,	so	few	
data	points	are	available	near	the	origin	due.		Instead	we’ll	focus	on	the	slope.		In	this	case	and	
as	evidenced	by	the	graph	above,	for	every	1	ppm	increase	in	Se	value,	we	see	a	corresponding	
Cu	increase	by	1,000	ppm.		Of	course,	the	data	spread	or	variability	is	high	but	the	graph	and	
correlation	coefficient	certainly	confirms	that	there	is	direct	relationship	between	Se	and	Cu	in	
this	dataset.			

Finally,	it’s	up	to	the	geoscientist	to	understand	what	that	actually	means	and	the	implications	
for	your	project.	In	the	case	discussed,	the	mineralized	fluids	which	carried	the	Cu	were	also	
enriched	in	Se.	The	relationship	between	the	two	elements	was	a	result	of	the	same	alteration	
event	but	the	correlation	was	not	a	1:1	due	to	the	differences	in	country	rock	chemistry	which	
preferentially	concentrated	more	Cu	in	some	areas	versus	Se.	In	areas	with	low‐Cu	but	high‐Se	
became	interesting	exploration	targets	to	find	a	more	favorable	host	rock	where	the	high‐grade	
Cu	was	potentially	located.		
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Summary 
The	analysis	of	geological	data	can	be	a	long	and	tedious	process,	but	appreciating	the	
fundamentals	of	EDA	and	performing	data	analysis	are	key	steps	for	a	geoscientist	to	truly	
understand	what	their	data	has	to	tell	them.		Unfortunately,	most	geoscientists	are	poorly	
exposed	to,	actively	avoid,	or	simply	don’t	appreciate	the	basics	of	EDA.		Like	other	sub‐
disciplines	within	geology,	statistics	can	easily	become	the	domain	of	expert	specialists	with	
endless	levels	of	sophistication	and	questionable	practicality.		However,	basic	data	analysis	
skills	should	be	as	fundamental	to	geoscientists	as	petrology	or	structure,	since	today’s	
geoscientists	are	commonly	required	to	collect	and	manage	large	datasets.			

Too	often	in	industry,	geoscientists	attempt	to	jump	straight	into	data	interpretation	or	
complicated	estimation	without	performing	the	fundamental	EDA.		It	is	recommended	to	
thoroughly	understand	the	data	prior	to	attempting	more	complicated	analyses,	interpretations,	
or	estimation.		Once	the	foundation	of	understanding	is	in	place,	you	are	encouraged	to	seek	out	
additional	statistical	analyses	along	with	more	capable	statistical	software	to	assist	with	EDA.			

Thank	you	for	taking	the	time	to	read	this	guidebook	and	learn	more	about	EDA.		I	hope	that	by	
following	the	examples	and	appreciating	the	importance	of	interrogating	data,	you	have	
acquired	some	useful	tools	in	understanding	geoscience	datasets.		Geology	is	a	science	built	on	
field	observations,	subjective	hypotheses,	and	working	theories.		The	industry	geoscientist	in	
the	21st	century	tends	to	be	less	focused	on	descriptive	observations	and	more	on	
understanding	large	numeric	datasets.		It	is	easier	than	at	any	time	in	history	to	collect	volumes	
of	data	but	seemingly	more	difficult	to	make	sense	of	it.	I	hope	this	ten	step	guidebook	will	help	
geoscientists	to	better	understand	the	fundamental	properties	of	their	data	and	thus	improve	
their	understanding	of	geological	processes	and	phenomena.		
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